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ABSTRACT

This paper analyzes the elasticities of demand on
tolled motorways in Spain. We use a panel dataset
covering an 18-year period, where the cross-section
observations correspond to various Spanish tolled
motorway sections. A dynamic model is estimated,
which allows us to identify short-term and long-
term responses to changes in the independent vari-
ables. The results show that demand is elastic with
respect to the level of economic activity, whereas
average elasticity with respect to gasoline price is in
line with that estimated in previous studies. For the
main variable of interest, the results indicate that
demand is relatively sensitive to toll changes,
although a wide variation is observed across motor-
way sections. A statistical analysis reveals that the
main factors explaining such differences are related
to variables that reflect the quality of alternative and
free roads. 

INTRODUCTION

In recent years, there has been renewed interest in
using tolls to finance road investment, in order to
avoid public budget constraints and at the same time
to involve the private sector in the provision of infra-
structure. In this new context, it is vital to have accu-
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rate knowledge of demand behavior for forecasting
and evaluation purposes. More precisely, it is neces-
sary to know the elasticity of demand with respect to
price, quality, or income, in order to obtain traffic
and revenue forecasts or to evaluate potential nega-
tive effects such as the misallocation of traffic
between tolled roads and parallel untolled roads. 

Empirical evidence on demand elasticity on tolled
motorways is limited due to the relative scarcity of
tolled roads in the world.1 Furthermore, most of the
studies provide average elasticities for specific short
road sections, tunnels, or bridges, which are highly
dependent on site-specific factors such as the degree
of congestion or the availability of alternatives.
Because of this, it is difficult to transfer the results to
other contexts. 

This paper aims to provide new and robust evi-
dence on demand elasticity on tolled motorways
with respect to its main determinants, placing special
emphasis on toll elasticities. We address this issue by
estimating a dynamic demand function using a panel
dataset consisting of observations of the Spanish
tolled motorway network over the period 1981 to
1998. The results show that the sensitivity of
demand to price depends both on the characteristics
of the tolled motorways and on those of the alterna-
tive free road.

The next section provides a review of demand
elasticity with respect to tolls followed by a brief
summary of the toll policy in Spain. The model
specification and certain relevant econometric issues
are discussed next. In the following section, we
present the data we used, and then we turn to the
model estimation and results. We next carry out a
statistical analysis in order to identify the factors
that explain the differences in toll elasticities across
motorway sections. Finally, the main conclusions of
the paper are summarized. 

REVIEW OF THE LITERATURE

There is a general consensus that, on average, trans-
portation demand is fairly inelastic with respect to
price. The empirical evidence gathered on toll elas-

ticities (table 1) seems to confirm this. The most fre-
quent values fall around – 0.2 and – 0.3 with a range
of – 0.03 to – 0.50. These values correspond to aver-
age demand elasticities. Unfortunately, the potential
sources of variation are not taken into account in a
formal manner. Nevertheless, some authors do iden-
tify the characteristics that will have an impact on
the elasticity value. 

The lowest values of toll elasticities are usually
observed for bridges in highly congested metro-
politan areas in the United States. This result can be
explained by the low level of the toll fee compared
with other components of private car cost, such as
parking fees (Harvey 1994). Wuestefeld and Regan
(1981) found that response varies according to the
purpose of the trips, trip frequency, the existence
of a toll-free alternative, and journey length.
Hirschman et al. (1995) state that demand is more
sensitive in the case of those infrastructures with a
good alternative untolled road.

Finally, some authors argue that traffic is sensi-
tive to time-varying pricing schemes. Gifford and
Talkington (1996) found evidence that day-of-the-
week cross-elasticities are complementary; that is,
an increase in toll rates on one day results in a
reduction of traffic not only on that day but on
other days of the week as well. Burris et al. (2001)
showed that travelers responded to the off-peak toll
discount implemented on two county bridges in
Florida. They also showed that demand elasticities
calculated across different off-peak periods varied
considerably. These results suggest that the imple-
mentation of time-varying pricing schemes can
encourage a more efficient use of motorways com-
pared with a uniform toll throughout the day.

TOLL POLICY IN SPAIN

In the early 1970s, tolls were introduced on the
road network in Spain mainly to raise revenue to
finance construction, operation, and maintenance.2

According to this objective, each motorway had to
cover its own costs, and cross-subsidies between
different motorways were not allowed. Initial toll
rates were specific to each motorway concession
and subsequently increased according to a cost1 According to the World Bank (2004), most countries

have no toll roads and, where there are such roads, the
tolled network typically comprises less than 5% of the
entire road network. 

2 Appendix A provides a brief summary of the develop-
ment of toll roads in Spain.
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index based on the rate of inflation for the three
main factors of production: labor, fuel, and steel.
This resulted in a substantial variation in toll rates
across the country, with higher tolls per kilometer
on those motorways with larger construction costs
or lower traffic volume. 

However, for various reasons, the toll policy was
modified over time and toll rates were not
increased as planned. First, the severe economic cri-
sis that the Spanish economy suffered from 1974 to
1984 revealed that certain concessionaires could
not break even at initial toll rates. Three of the con-
cessionaires with financial difficulties were taken
over by the government, while others were merged
with stronger companies. In both cases, the terms
of the concession agreements were modified, lead-
ing to an increase in the initial toll rates in real

terms. Moreover, explicit financial support from
the government was allowed for a small share in
the motorway network and cross-subsidies
appeared among the merged concessionaires.3 Fur-
thermore, the formula approved for toll revisions
was not systematically applied to all the motor-
ways, and, as a consequence, toll rates for different
motorways varied over time. Thus, in the 1980s,
tolls increased in real terms on 8 of the 10 motor-
ways, although at varying rates, whereas a decrease
was observed in the other 2.

TABLE 1  Elasticity of Traffic Level with Respect to Tolls

Authors Results Context

Wuestefeld and Regan (1981) Roads between – 0.03 and – 0.31 
Bridges between – 0.15 and – 0.31 
Average value = – 0.21

16 tolled infrastructures in the 
U.S. (roads, bridges, and 
tunnels)

White (1984), quoted in Oum et 
al. (1992)

Peak-hours between – 0.21 and – 0.36
Off-peak hours between – 0.14 and 
– 0.29

Bridge in Southampton, UK

Goodwin (1988), quoted in May 
(1992)

Average value = – 0.45 Literature review of a number 
of previous studies

Ribas, Raymond, and Matas 
(1988)

Between – 0.15 and – 0.48 Three intercity motorways in 
Spain

Jones and Hervik (1992) Oslo – 0.22
Alesund – 0.45 

Toll ring schemes in Norway

Harvey (1994) Bridges between – 0.05 and – 0.15
Roads – 0.10

Golden Gate Bridge, San 
Francisco Bay Bridge, and 
Everett Turnpike in New 
Hampshire (U.S.).

Hirschman, McNight, Paaswell, 
Pucher, and Berechman (1995)

Between – 0.09 and – 0.50
Average value – 0.25 (only significant 
values quoted)

Six bridges and two tunnels in 
the New York City area, U.S.

Mauchan and Bonsall (1995) Whole motorway network – 0.40
Intercity motorways – 0.25

Simulation model of motorway 
charging in West Yorkshire, UK

Gifford and Talkington (1996) Own-elasticity of Friday–Saturday 
traffic – 0.18
Cross-elasticity of Monday–Thursday 
traffic with respect to Friday toll – 0.09

Golden Gate Bridge, San 
Francisco, U.S.

INRETS (1997), quoted in 
TRACE (1998)

Between – 0.22 and – 0.35 French motorways for trips 
longer than 100 kilometers

Lawley Publications (2000) – 0.20 New Jersey Turnpike, U.S.

Burris, Cain, and Pendyala  
(2001)

Off-peak period elasticity with respect 
to off-peak toll discount between 
– 0.03 and – 0.36

Lee County, Florida, U.S.

3 It is important to note that the Spanish government
assumed a very high level of risk as a consequence of the
foreign rate assurance and the loan guarantees offered.
The exchange rate losses over the period 1976–1996 were
up to 65% of the total investment (Bel 1999).
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In 1990, when most of the motorways had
already been constructed, the toll revision formula
was changed. Since then the new formula has been
linked to the consumer price index (CPI) and allows
for toll increases equal to 95% of annual CPI
growth. This new approach to price regulation
should have resulted in a slight decrease in toll rates
in real terms over time for all the motorways. How-
ever, in practice, this formula was only systematically
applied for a short period of time (1990 to 1996)
and even then not to all motorways. The reasons
again are manifold. 

First, in the 1990s, there was renewed interest in
the construction of tolled motorways from both
central and some regional governments. In the first
case, some concession agreements were renegotiated
and existing toll rates reduced (even halved) to com-
pensate for the introduction of tolls on upgraded
toll-free motorways. Second, toll rates on regional
motorways increased well above the average.
Finally, the growing political pressure against tolls
resulted in a renegotiation of most of the agree-
ments with a reduction of toll rates in exchange for
compensating the concessionaires with an extension
of the concession period. 

Since 1997, those motorways with higher tolls
per kilometer have progressively reduced their rates;
in some cases, the tolls decreased as much as 40%
nominally in one year. Additionally, the rate of
value-added tax was lowered from 16% to 7% on
all the motorways.

The criterion used to set initial toll rates and
changes in the toll policy during the 1990s have
resulted in a wide range of variation of rates across
the country and over time, which greatly facilitates
the econometric estimation of toll elasticities. 

MODEL SPECIFICATION

The Demand Equation

The methodology used to estimate the demand
function was the panel data approach, where the
cross-section observations correspond to motorway
sections. This approach has two types of advan-
tages. First, the temporal dimension allows the
modeling of the dynamic adjustment of demand
resulting from changes in transportation policy and
the socioeconomic environment over time. More-

over, the cross-section observations provide more
variation in the data, because toll rates vary more
between motorway sections than they do over time.
It thus solves the problem of insufficient variation in
tolls per kilometer that appears in pure time series
studies.4 As a result, the estimated elasticity value
captures the rich variation of prices across the dif-
ferent sections, as well as its temporal variation in a
given section. Furthermore, by using a panel
dataset, the number of observations is increased,
which improves the precision of the estimated
parameters.

We assumed that the volume of traffic on a
motorway section is a function of the monetary and
time costs of using the motorway, the monetary and
time costs of using the alternative parallel free road
or modes, the level of economic activity, and the
generation and attraction factors at the origins and
destinations. Monetary cost is defined as the sum of
three components: toll, gasoline cost, and other
vehicle operating costs. All the monetary variables
were deflated by the CPI. The level of economic
activity was measured as real gross domestic product
(GDP); given that trips on motorways are under-
taken for both leisure and business purposes, we
used real GDP rather than disposable income in
order to better capture the level of economic activity.
Finally, the amount of traffic on a motorway section
depends on the size of the potential market for each
of them, which was determined by generation
capacity and attraction of the origins and destina-
tions, such as population and employment.   

The model can therefore be expressed as follows:

(1)

where
m =  motorway, 
o = alternative (other) routes or modes,
Yit = traffic volume on motorway section i in 

period t, 

4 When using a panel dataset, the total variability of a
measure has two components: the within component
(variability of the sample through time within each
section) and the between component (variability of the
sample across motorway sections). The panel dataset
takes advantage of both sources of variability.

Yit f GDPt GPt MTit
m

OCit
m,,,,⎝

⎛=

TCit
m

OCit
o

TCit
o

Oi Di uit, , ,,,
⎠
⎞
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GDPt = real national GDP in period t,
GPt = gasoline price in period t deflated by the

CPI,
= motorway toll on section i in period t

deflated by the CPI,
= other vehicle operating costs (i.e., other

than tolls and gasoline), j = m, o, 
= time costs on section i in period t, j = m, o,

Oi = generation factors on section i,
Di = attraction factors on section i,
uit = error term, normally distributed with

mean 0 and variance . 
However, this is an ideal model. The empirical

specification we finally estimated was limited by
some data issues. Unfortunately, no data were avail-
able on other vehicle operating costs or time costs
for the whole sample period. An analysis of the
transportation costs in Spain allowed us to assume
that vehicle operating costs and time costs have
remained approximately constant over time on most
of the motorway sections although this hypothesis
did not hold for some of them. This was the case for
seven sections, located around urban areas where
both an increase in congestion and changes in the
road network have affected the quality of service.
These observations were excluded from the sample.
The rest of the sections corresponded to interurban
motorways where congestion was not a problem on
most days. Hence, it can be assumed that time costs
have remained relatively constant over time. 

In order to take into account the most significant
changes in the road network, a set of dummy vari-
ables was introduced. For example, the improve-
ment of a parallel free road was captured by a
dummy variable that takes the unit value since the
opening year. Finally, the generation and attraction
factors showed that the difference in traffic volume
across motorway sections related mainly to popula-
tion and the level of economic activity. Given that
the dependent variable was observed for very short
sections of the motorway and given also the diffi-
culty in identifying how these factors should be
measured, we assumed that these factors were cap-
tured by the specific fixed effects.5 

Hence, under the assumption that  = 
and =  for j = m and o, the equation can
be rewritten as 

(2)

where Zit is the vector of dummy variables
accounting for major changes in the network.
These variables are defined in table 2.

One of the advantages of using a panel dataset is
that this methodology allows us to explain the differ-
ences between cross-section observations not cap-
tured by the variables included in the model through
the individual fixed effects, . These individual
fixed effects are represented by specific intercepts for
each motorway section in the sample, and they cap-
ture the effect of factors not included in the equation
that can be considered fixed over time but vary
among motorway sections. 

Thus, the demand equation can be rewritten as

(3)

where  captures the variables in parentheses in
equation (2). 

From a statistical point of view we have validated
the assumed hypothesis that certain factors remain
relatively constant over time by the application of
recursive least squares.6 This methodology allows us
to prove the constancy of the estimated coefficients
over time, so the null hypothesis of the structural
constancy of the model is not rejected by the data.

Given the low number of temporal observations
available for some of the motorway sections, the
demand elasticities with respect to GDP and gaso-
line price are assumed to be the same across all
motorway sections. According to the statistical test

5 See Voith (1991) for a similar assumption.
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6 The recursive least squares technique estimates the
model by adding new temporal observations in a progres-
sive way, thus making it possible to test the stability of the
coefficient vector. If the coefficient displays significant
variation as more data are added to the estimated equa-
tion, it is an indication of instability. In our case, using the
standard approach, the calculation of confidence intervals
for the estimated recursive coefficients verifies the struc-
tural constancy hypothesis.

OC j
it OCi

j

TC j
it TCi

j

Yit f OC i
m TCi

m OC i
o TCi

o Oi Di, , , , ,⎝ ⎠
⎛ ⎞ ,

⎩
⎨
⎧

=

GDPt GPt MT m
it Zit uit

⎭
⎬
⎫

, ,,,

αi

Yit f αi GDPt GPt MT m
it Zit uit, ,,, ,( )=

αi



96 JOURNAL OF TRANSPORTATION AND STATISTICS V6, N2/3 2003

applied, these constraints were not rejected by the
data.7 The advantage of estimating a constrained
model is that it allows efficiency gains in the estima-
tion of the main parameter of interest, which in our
case is toll elasticity. The coefficients of the toll
variable, and hence the toll elasticities, are specific
for each motorway section. We will, therefore, esti-
mate different toll coefficients for each cross-section
unit, which will depend on the characteristics of the
motorway and the alternative routes. 

To sum up, the traffic volume on motorway
section i in period t depends on the individual fixed
effects, the level of economic activity, the price of
gasoline, and the level of toll. The individual fixed
effects capture the effects of factors not included in
the equation that remain relatively constant over
time but vary among the different motorway
sections. As previously mentioned, even for this
more parsimonious version of the model, the use of
recursive estimation techniques does not reject the
temporal stability of the coefficients.

Some Econometric Issues

The next step in the model specification process is to
decide on the functional form for the demand equa-
tion. The first issue we considered is whether the
series are stationary or integrated8 and, in the case
of integrated series, whether they are cointegrated
or not. The available econometric literature does
not offer a clear guide on how to deal with this issue
when panel data are used. 

In this study, in spite of the short time span for the
series (a maximum of 18 years), the traditional unit
root tests (Augmented Dickey Fuller and Phillips
Perron) were used to test whether the variables were
stationary or integrated. The tests were applied to
each motorway section. The null hypothesis of unit
root was always nonrejected at the usual significance
levels of the tests. However, the same tests showed
the stationarity of the variables in first differences. 

TABLE 2  Definition of the Dummy Variables Included in the Estimated Demand Equation

Dummy variables Period Comment
Expected 

sign

Z1–Z4 1994 – 1998 They reflect the negative impact on traffic on the 4 A(2) 
motorway sections, derived from capacity and quality 
improvements on the alternative free road. 

–

Z5–Z7 1992 They account for the positive impact on the 3 A(4) motorway 
sections, derived from the Seville World Exhibition in 1992. +

Z8–Z11 1995 – 1998 They reflect the negative impact on traffic on 4 A(7) motorway 
sections as a consequence of the extension of an alternative 
tollway. 

–

Z12, Z14, and Z16 1993 – 1998 They reflect the negative impact on traffic on 3 A(7) motorway 
sections, derived from the opening of an alternative free 
motorway.

–

Z13, Z15, and Z17–
Z24

1990 – 1998 They account for the positive impact on traffic on 10 A(7) 
motorway sections, due to the extension of this motorway. +

Z25 1996 – 1998 It reflects improvements in the free alternative motorway 
network for the first of the A(19) motorway sections. –

Z26, Z27, and Z28 1994 – 1998 They account for the positive impact on traffic on the 3 A(66) 
sections as a consequence of the improvement and extension 
of the motorway. 

+

Notes: In Spain, the motorways (autopistas) are identified by the letter “A” followed by a number in parentheses. 
These variables take the value 1 in the reported period; otherwise they are 0.

7 The calculated F statistic for the hypothesis of equal
elasticity with respect to gasoline price in all the sections
of the motorway included in the sample is 0.944; for the
hypothesis of equal elasticity with respect to GDP it is
1.082, while the critical value at a significance level of 5%
is 1.22.

8 Using integrated series (unit root series) is not a problem
if the considered variables are cointegrated, given that in
this case the cointegration property guarantees that the
estimates are both consistent and efficient. However, if the
variables are not cointegrated, this may give rise to the
spurious regression problem. For a standard reference to
unit root and cointegration tests, see Hamilton (1994). All
results from the applied test are available on request.
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The following step is an analysis of the series’
cointegration. We carried this out using the Engle-
Granger and the Cointegration Equation Durbin-
Watson tests.9 In this case, in almost all regressions
estimated in levels, the null hypothesis of no
cointegration was also nonrejected. Based on this
evidence, and following standard econometric
practice, all the estimations were carried out using
first differences of the variables.

Second, in order to allow for dynamic effects, the
starting specification included lags of the dependent
and explanatory variables. The search for the final
specification followed a general-to-specific process.
After simplifying the model with restrictions that
were not rejected by the data, a partial adjustment
equation was selected. Therefore, both exogenous
and lagged dependent variables appear as explana-
tory variables in the final model.

Finally, given that there are no theoretical argu-
ments that can contribute to the choice of the
functional form for the demand equation, we
proceeded to select the most appropriate one on the
basis of the goodness of fit of the models. We
considered three alternatives—the linear model, the
semi-log model, and the log-linear model—which
are three of the most widely used in estimating
aggregate demand models. The criterion used to
select among these alternative specifications is
based on the comparison of the values of the log of
the likelihood function from the three competing
models.10 According to this criterion the log-linear

specification was preferred as it showed the highest
value for the log of the likelihood function.11

According to the three issues previously dis-
cussed, the equation to be estimated corresponds to
a partial adjustment model where the variables are
in first differences of the logarithms. The equation
can be written as follows:12

(4)

It must be stressed that in equation (4) using first
differences of the variables eliminates the fixed
effects from the estimated equation. In other words,
the section-specific intercepts appearing in the
model expressed in levels vanish from the finally
estimated equation.

The presence of the lagged dependent variable as
a regressor implies a dynamic structure for the
response of the dependent variable to changes in
the explanatory variable. That is, individuals do
not adjust their behavior in one period, but with a
delay. The underlying hypothesis for this specifica-
tion is that present behavior is also determined by
the values of the explanatory variables in the past.
Therefore, the estimation of a dynamic model
makes it possible to distinguish between short-term
and long term effects. In our study, short term
refers to the effect on demand occurring within one
year of a change in the relevant variable, whereas
long-term measures the total response to a change
in the independent variable over time. 

According to equation (4), the coefficients of the
independent variables  should be interpreted as
short-term elasticities. The long-term elasticities are

9 The Johansen test was not applied to test cointegration,
because this test assumes the existence of feedback
between all the variables. In our case, variables such as
gasoline price, toll, and GDP must be considered as
weakly exogenous in a model trying to explain motorway
traffic volume.
10 The log of the likelihood functions for the linear, semi-
log, and log-linear specifications are, respectively:

 

where the constant C is the same for each specification,
SSR is the residual sum of squares, Y is the dependent
variable and T is the sample size (see Davidson and
MacKinnon 1993). The calculated values for these func-
tions are, respectively, –9,768.5, –9,201.8, and –9,183.6

L0 C T
2
---- SSR0( )ln ,L1 C T

2
---- SSR1( )ln ln Yt( ),

1

T

∑––=–=

L2 C T
2
---- SSR2( )ln Yt( )ln

1

T

∑––=

11 The log-linear functional form is one of the most widely
used functional forms in aggregate demand models. In
spite of its simplicity, the log-linear specification offers an
adequate approximation to the demand curve, at least in
the neighborhood of the actual data. This is the usual pro-
cedure for selecting among alternative functional forms
when estimating aggregate transportation demand equa-
tions. For an application of similar procedures see, for
example, Oum (1989) and Dargay and Hanley (2002).
12 This is a standard specification for aggregate demand
functions. See, for instance, Dargay and Goodwin (1995),
Dargay and Hanley (2002).
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, where  is the adjustment factor measur-
ing the speed of adjustment. The greater the value of

 the slower the speed of adjustment and the greater
the difference between short-term and long-term
elasticities. 

The concept of mean lag is useful to characterize
the dynamic structure of the model. The mean lag is
defined as a weighted average of the lag structure of
the model, where the weighting coefficient for
period j is the ratio between the coefficient with lag j
and the long-term coefficient. The mean lag can be
calculated as . 

THE DATA 

The data cover all Spanish tolled motorways sections
for 18 observation years between 1981 and 1998 (see
Ministerio de Fomento Annual). The cross-section
observations correspond to the shortest motorway
section allowed by data-collection processes, with an
average length of 14.7 kilometers. The use of these
short sections guarantees that the observed traffic
mix is homogeneous. 

We eliminated 11 sections: those that experi-
enced significant changes in congestion (either on
the motorway or on the alternative routes), those
that partially admit toll-free traffic, and those that
have open tolls. Not all the motorways sections
were observed for all the years in the sample. Only
sections for which data were available for at least
eight periods were used. Furthermore, those sec-
tions belonging to motorways not completely con-
structed during the observation period were also
eliminated to avoid changes in traffic volume that
may be due to the progressive extension of the
motorway. The final sample was a panel dataset of
72 road sections for 1981 through 1998, although
this temporal span was not available for all cross-
section units. The total number of observations
was 1,135.13 

The dependent variable is the annual average
daily traffic volume in each section, defined as the
number of vehicle-kilometers run per year, divided

by section length and number of days.14 The
explanatory variables are real GDP, gasoline price,
and toll per kilometer, the last two deflated by the
CPI. Working with short sections of the motorway
made it possible to calculate in a fairly precise way
the toll paid per kilometer. GDP and gasoline prices
are defined at the national level and take the same
value for all sections in the sample, but, as we are
working with a panel dataset, these have different
values for each year of the sample. Finally, a set of
28 dummy variables captures the most important
changes in the road network. These variables,
defined in table 2 (page 6), take the value 1 in the
reported period and 0 otherwise. The main descrip-
tive statistics for the explanatory variables are
defined in table 3. 

Before estimating the demand equation, we
present two of the main features of the relevant vari-
ables in the study: traffic volume and toll paid per
kilometer. First, as figure 1 shows, there seems to be
a clear relationship between the level of economic
activity—measured as GDP—and traffic volume
over time. Using aggregate data for all the motorway
sections for 1981 through 1998, figure 1 shows the
synchronism between the rates of growth of GDP
and traffic volume with a correlation coefficient
equal to 0.796.15 This preliminary result is in line
with previous studies showing that automobile use is
elastic with respect to income.16 It is also interesting
to compare the cycles of GDP and traffic volume.17

As can be seen in figure 2, the traffic cycle clearly
overreacts to the GDP cycle. Therefore, in periods
of economic expansion, the cyclical components of

13 Given that the equation is estimated in first differences
of the logarithms and includes the lagged dependent vari-
able, the final number of observations is reduced to 990.

β
1 ϕ–
------------ 1 ϕ–

ϕ

ϕ
1 ϕ–
------------

14 It should be noted that the dependent variable is an
aggregate of different types of traffic, of different length
and purpose. Therefore, estimated elasticity for each sec-
tion must be understood as an average value.
15 The t statistic is equal to 5.27 and for 18 observations
the null hypothesis of independence will be rejected at a P-
value of 0.0001. This confirms the narrow relationship
that exists between both variables.
16 For a recent review on this subject, see Graham and
Glaister (2002). 
17 Cycles for both variables were obtained through the
application of the Hodrick-Prescott filter to the log of the
series and by calculating the difference between the
observed and trend values. This filter is a standard tech-
nique that allowed us to smooth the series in order to
obtain an adaptive long-term trend for the variable. It is
usual to consider that the difference between the observed
series and smoothed series approximates the cycle.
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traffic volume exceed the corresponding components
of GDP, while the opposite occurs during recession. 

Second, at the cross-section level, a substantial
difference is observed in traffic volume among the
different motorways as well as among sections of
the same motorway. The daily average traffic vol-
ume ranges from 1,689 automobiles per day in the
section and year having the lowest volume to
63,741 automobiles per day in the section and year
with the highest. Finally, as we explained earlier, we
found an extensive price range for initial toll rates.
For the whole period, at 1992 prices, the lowest
price paid per kilometer was about 0.037 euros,
whereas the highest was about 0.22 euros.

RESULTS

The results of the estimated model—equation (4)—
show that all the estimated coefficients have the
expected signs and most of these were estimated
with a high degree of precision, as measured by the

standard error of the coefficients (see appendix B).
Given that heteroscedasticity was observed in the
variance of the random term between sections, the
model was estimated using weighted least squares
(WLS). Comparing ordinary least squares with
WLS, the latter procedure results in similar esti-
mates while the standard errors decrease. In relation
to the toll coefficients, a significant variation across
motorway sections was observed. 

A Chi-square test allowed us to clearly reject the
null hypothesis of equality of toll coefficients across
all sections.18 On the other hand, the differences in
the value of the toll coefficient (which, given the
model specification, correspond to short-term elas-
ticity) could be explained by certain motorway
characteristics. First, adjacent sections in the same
motorway present very similar elasticities. Second,

TABLE 3  Descriptive Statistics

Variables Mean Median Maximum Minimum Std. dev. Observations

Daily traffic volume 11,490 9,460 63,741 1,689 8,821 1,135

Toll (euros per km)1 0.091 0.086 0.224 0.037 0.035 1,135

Gasoline price (euros per liter)1 0.619 0.533 0.867 0.486 0.139 18

GDP (millions of euros)1 219,311 230,277 275,869 174,149 33,619 18

Section length (kms) 14.7 13.9 43.0 2.0 8.2 72
1 The base year for variables expressed in monetary units is 1992.

FIGURE 1   Rate of Growth of GDP and Traffic Volume
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FIGURE 2   Traffic Cycle and GDP Cycle

18 The calculated Chi-square statistic was 113.12, while
the critical value for 71 degrees of freedom (d.f.) at a sig-
nificance level of 5% is 52.0.
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the more inelastic sections are located on corri-
dors with a high volume of traffic—mainly the
motorways along the Mediterranean coast. Third,
demand is seen to be more elastic where a good
alternative free road exists. 

The observed results suggest the possibility of re-
estimating the model introducing the hypothesis of
equality of toll elasticities across those motorway
sections that showed similar coefficients in the
initial general model. The introduction of equality
constraints among coefficients, not rejected by the
data (see below), makes it possible to obtain more
precise estimates of the coefficients by reducing
both the number of coefficients to be estimated and
the multicollinearity. In fact, we followed standard
econometric methodology that recommends going
from the general to more parsimonious model.
These constraints were introduced by classifying
the motorway sections into the following groups
according to the toll coefficient estimated in the
general model: 

1. Low short-term elasticity: sections with toll
coefficients between 0 and – 0.3.

2. Middle-low short-term elasticity: sections with
toll coefficients between – 0.3 and – 0.4.

3. Middle-high short-term elasticity: sections with
toll coefficients between – 0.4 and – 0.6.

4. High short-term elasticity: sections with toll
coefficients larger than – 0.6 in absolute value.

Thus, four different coefficients for toll elastici-
ties are now estimated. Detailed results of this final
model are reported in table 4 and correspond to the
WLS estimation. The application of a Chi-square
test did not reject the hypothesis of classifying the
motorway sections into four groups according to
their estimated toll elasticity.19 The model fits the
data well and all estimated coefficients are highly
significant. The level of economic activity has a pos-
itive effect on traffic volume, whereas gasoline price
and the toll have a negative influence. With respect
to toll coefficients, significant differences among
them can be observed, according to the grouping by
sections mentioned above. All dummy variables
take the expected signs described earlier in table 2. It

should be noted that the inclusion of these variables
increased the statistical significance of toll variable
estimates without modifying their value in any
noticeable way. 

The short-term and long-term elasticities are
summarized in table 5. As can be seen from the
t-statistics, all the estimated coefficients are signifi-
cant at P-values clearly lower than the conventional
0.05 or 0.01 levels. A lag parameter equal to 0.366
implies a long-term effect of about 1.58 times the
short-term effect. This result reflects a wider range
of opportunities and available options open to indi-
viduals over a longer time span. However, the
period of adjustment is relatively short, with 87%
of total adjustment taking place within the first two
years. 

Traffic on tolled motorways is shown to be
elastic in relation to GDP, with elasticity values
equal to 0.89 and 1.41 for the short- and long-
term, respectively. This result confirms what is intu-
itively obvious in figures 1 and 2. Elasticity with
respect to gasoline price equals –0.34 in the short
term and –0.53 in the long term. Our results are
consistent with those reported in the literature,20

although they are closer to the maximum reported
values. In the context of this paper, relatively high
value for gasoline price elasticity can be expected,
compared with other estimates carried out for
freeways, given that when the gasoline price is
increased tolled motorway users can shift to a par-
allel free road. 

The estimated coefficients on the toll variables
provide evidence that demand is sensitive to toll
variations. This conclusion is supported by the high
precision, measured by the standard error, with
which the elasticities have been estimated. Nonethe-
less, significant differences were observed among
groups of motorways. For the first group, demand
is shown to be rather inelastic. Short-term and long-
term elasticities are equal to –0.21 and –0.33,
respectively. However, for the remaining groups,
demand becomes more price elastic. For those

19 The calculated Chi-square statistic was 13.27, while the
critical value for 68 d.f. at a significance level of 5% was
49.0.

20 For a literature review of such findings, see Goodwin
(1992), Oum et al. (1992), Johansson and Schipper
(1997), Espey (1998), and de Jong and Gunn (2001). Gra-
ham and Glaister (2002) provide an extensive interna-
tional review of demand elasticity with respect to fuel
price.
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TABLE 4  Estimated Demand Equation
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990

Variable Coefficient Std. error t-statistic P-value

D(LGDP) 0.8901 0.0409 21.7605 0.0000

D(LPGAS) –0.3367 0.0153 –22.0050 0.0000

D(LTRAFFIC(–1)) 0.3659 0.0158 23.1470 0.0000

D(LTOLL1) –0.2092 0.0177 –11.813 0.0000

D(LTOLL2) –0.3707 0.0147 –25.248 0.0000

D(LTOLL3) –0.4449 0.0225 –19.801 0.0000

D(LTOLL4) –0.8286 0.0844 –9.8179 0.0000

D(Z1) –0.0517 0.0260 –1.9919 0.0467

D(Z2) –0.0689 0.0239 –2.8782 0.0041

D(Z3) –0.0718 0.0246 –2.9179 0.0036

D(Z4) –0.0519 0.0263 –1.9745 0.0486

D(Z5) 0.1549 0.0396 3.9136 0.0001

D(Z6) 0.1690 0.0364 4.6466 0.0000

D(Z7) 0.1196 0.0583 2.0507 0.0406

D(Z8) –0.0679 0.0219 –3.1035 0.0020

D(Z9) –0.0623 0.0201 –3.1029 0.0020

D(Z10) –0.0656 0.0286 –2.2911 0.0222

D(Z11) –0.0425 0.0227 –1.8689 0.0619

D(Z12) –0.0550 0.0250 –2.2015 0.0279

D(Z13) 0.0746 0.0251 2.9698 0.0031

D(Z14) –0.0337 0.0201 –1.6798 0.0933

D(Z15) 0.0626 0.0202 3.0952 0.0020

D(Z16) –0.0360 0.0188 –1.9175 0.0555

D(Z17) 0.0498 0.0188 2.6367 0.0085

D(Z18) 0.0445 0.0192 2.3154 0.0208

D(Z19) 0.0404 0.0153 2.6397 0.0084

D(Z20) 0.0529 0.0134 3.9563 0.0001

D(Z21) 0.1698 0.0433 3.9163 0.0001

D(Z22) 0.0812 0.0163 4.9712 0.0000

D(Z23) 0.0822 0.0207 3.9686 0.0001

D(Z24) 0.1379 0.0187 7.3903 0.0000

D(Z25) –0.1366 0.0488 –2.7992 0.0052

D(Z26) 0.0864 0.0177 4.8746 0.0000

D(Z27) 0.0751 0.0175 4.2902 0.0000

D(Z28) 0.0451 0.0206 2.1897 0.0288

R2  (average for the 
motorway sections)

0.74

First order 
autocorrelation 
coefficient (pooling 
estimation for the 
motorway sections)

0.019

Note: All variables are defined in first differences (D) of the logarithm (L). GDP = gross domestic product; PGAS = 
gasoline price; TRAFFIC = average daily traffic volume; TOLL1 = low toll elasticity group; TOLL2 = low-medium toll 
elasticity group, TOLL3 = medium-high toll elasticity group; TOLL4 = high toll elasticity group; D(Z1) to D(Z28) = first 
differences of the dummy variables to account for changes in the road network.
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motorway sections classified in group 4, elasticities
are over –0.8 in the short term and well above unity
in the long term. These differences prove that the
demand response to toll variations depends on the
particular characteristics of the motorway and alter-
native routes. In the next section, we provide some
evidence of these characteristics.

VARIATION OF TOLL ELASTICITIES 
ACROSS MOTORWAYS

Once it has been proved that toll elasticities vary
across motorway sections, it is interesting to con-
sider which are the main variables that explain such
differences. With this purpose in mind, we estimated
an ordered probit model21 where the dependent
variable is the category in which the tolled section
falls, ranging from 1 to 4 (low, middle-low, middle-
high, and high categories of toll elasticities). 

The set of explanatory variables is limited by
data availability. First, we were able to gather infor-
mation on average speed and the percentage of
heavy vehicles with respect to total traffic on the
parallel free road; these variables reflect the quality
of the alternative road. Second, two characteristics
of the motorway have been included: section length
and a dummy for sections in tourist areas. There are
a priori reasons to expect that traffic in tourist areas
will be less sensitive to price. It might well be that
foreign visitors, due to a lack of information given
that they are occasional users, have more inelastic
demands than frequent motorway users. Moreover,
congestion in these areas on the free alternative
roads is rather high during summer months due to

their low capacity and the high volume of short-
distance traffic for which tolled motorways are not
a feasible option. This increased congestion can fur-
ther reduce demand elasticity. 

The number of observations in this model falls
from 72 to 52, as we could not gather all the
required information for all sections. Table 6 shows
the results of the estimated equation. Because the
interpretation of the coefficients of the model was
not straightforward, we calculated the change in the
estimated frequencies (probabilities) after a change
in the explanatory variable. Baseline frequencies
were calculated for the mean value of the variables
in the sample, and the tourism dummy takes value
1. In order to simulate the change in probabilities a
10% increase in each variable was assumed. Results
are presented in table 7. 

The estimated frequencies show that demand is
more sensitive to price when the alternative free
road is of better quality. That is, the higher the
speed on the alternative road the more elastic
demand is with respect to tolls. On the contrary,
when the percentage of heavy vehicles on the alter-
native road increases, the roadway segment shifts
into a more inelastic demand category. Addition-
ally, demand is slightly more elastic on longer
motorway sections. This can be explained by the
fact that demand is more sensitive to price when
the total amount to be paid is larger. Finally, as
could be expected, motorway demand in tourist
areas is more inelastic.  

CONCLUSIONS

The estimation of a dynamic demand function on
tolled motorways has made it possible to identify
the behavioral responses of users to changes in the

TABLE 5  Estimated Short-Term and Long-Term Elasticities1

Variable
Short-term 
elasticity t-statistic

Long-term 
elasticity t-statistic

GDP elasticity 0.890 21.76 1.405 27.85

Gasoline price elasticity –0.337 –22.01 –0.531 –18.50

Toll elasticity group 1 –0.209 –11.81 –0.330 –11.42

Toll elasticity group 2 –0.371 –25.25 –0.585 –21.71

Toll elasticity group 3 –0.445 –19.80 –0.702 –17.66

Toll elasticity group 4 –0.828 –9.82 –1.307 –9.81
1 Group 1 includes 21 sections; group 2, 25 sections; group 3, 21 sections; and group 4, 
5 sections.

21 Alternatively, a logit ordered model was estimated with
very similar results. 
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explanatory variables. First, traffic on the tolled
motorways is shown to be strongly correlated with
the level of economic activity in such a way that,
during periods of growth, traffic increases clearly
exceed GDP growth, with the opposite occurring
during recessions. 

Travel demand is shown to be less sensitive to
gasoline prices and tolls than it is to GDP. Elasticity
with respect to gasoline price is about – 0.3,
whereas a wide range of variation appears in toll
elasticities across motorway sections. The model
results prove that an average aggregate toll elastic-
ity cannot be used for forecasting or evaluation
purposes. According to individual estimates, the
sections were classified into four categories for
which short-term elasticity ranged from – 0.21 in

the most inelastic sections to – 0.83 in the most
elastic. This range of variation can be explained by
those variables related to the quality of the alterna-
tive roads, the length of the motorway section, and
the location of the motorway in a tourist area. The
more congested the alternative roads are, the higher
the time benefits of using the tolled motorway will
be, with demand consequently being more inelastic.

The finding that the sensitivity of demand to tolls
can be higher than the average values found in the
literature confirms that tolling motorways can have
a significant impact on traffic. Setting a toll on a
motorway can result in a misallocation of traffic
between the tolled motorway and the parallel free
road. There are several examples in Spain of under-
used motorway sections while the alternative road is

TABLE 6  Estimation Results of the Ordered Probit Model
Dependent variable: category of toll elasticity (from 1 to 4)
Robust t-statistics

Variable Coefficient Std. error t-statistic P-value

Speed on the alternative road 0.032 0.010 3.298 0.001

Percentage of heavy vehicles on the alternative road –0.053 0.017 –4.233 0.000

Motorway section length 0.024 0.010 4.268 0.000

Tourist dummy –1.227 0.358 –3.340 0.001

Limit_1 0.919 0.862 1.214 0.226

Limit_2 2.393 0.920 3.014 0.003

Limit_3 3.666 0.962 3.814 0.000

Observations 52

Likelihood ratio-statistic 25.60 (critical value at 5% = 9.49)

Notes: The limit points are the estimates of the threshold coefficients of the distribution function. That is, if F( ) is the distribution 

function of the unobserved continuous latent variable, the ordered probit model implies that:

If F( ) ≤ Limit_1, then the dependent variable falls into category 1 (low elasticity).

If Limit_1< F( ) ≤ Limit_2, then the dependent variable falls into category 2 (middle-low elasticity).

If Limit_2 < F( ) ≤ Limit_3, then the dependent variable falls into category 3 (middle-high elasticity).

If F( ) > Limit_3, then the dependent variable falls into category 4 (high elasticity).

TABLE 7  Estimated Probabilities

Motorway 
group 
elasticity Baseline

10% increase 
in speed on 
alternative 

road

10% increase 
in heavy 

vehicles on 
alternative 

road

10% increase 
in section 

length
Tourism 

dummy = 0

Low 0.522 0.410 0.574 0.500 0.121

Middle-low 0.415 0.484 0.377 0.430 0.498

Middle-high 0.060 0.100 0.047 0.067 0.323

High 0.003 0.006 0.002 0.003 0.058
Note: The baseline values taken by the explanatory variables are: speed = 88.9 km/hr; percentage of heavy vehicles = 
24.9%; section length = 23.4 km; and tourism dummy = 1.

X′β

X′β

X′β

X′β

X′β
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severely congested, with a consequent increase in
maintenance and environmental costs. In such
cases, decreasing the toll may improve traffic alloca-
tion and, hence, reduce the total costs of using the
infrastructure. Moreover, it should be noted that
investment in alternative roads or transportation
modes would imply a more elastic demand for
motorway users, because they can take advantage
of a wider range of choices in traveling to their
destinations. Thus, decisions about toll levels on
the motorways are not independent of investment
policy for transportation infrastructure. 
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APPENDIX A

In Spain, the tolled motorway construction policy of
the 1960s granted concessions to private companies
both for their construction and operation. As a
result of this policy, 1,800 kilometers of tolled
motorways, called autopistas, were completed by
the end of the 1970s, serving demand along two
main traffic corridors. 

Once the main traffic corridors had been conces-
sioned and, simultaneously, with the Spanish econ-
omy suffering the effects of the energy crisis, private
capital was no longer interested in the construction
of autopistas. In the mid-1970s, the concession of
planned motorways was increasingly difficult, and
some were postponed. By the end of that decade,
the policy was abandoned. 

In the 1980s, the need for significant expansion of
the road network was evident, and the government
decided to finance this with national tax revenue.
Approximately 5,500 kilometers of untolled motor-
ways were constructed by 1998, covering most of the
national network. The main exceptions were the
concessions granted by the regional government
of Catalonia to construct and operate some tolled
motorways. By 1998, the Spanish national highway
network consisted of 9,637 kilometers, of which
2,072 kilometers were tolled motorways, 6,185
kilometers were untolled motorways, and 1,380
kilometers were two-lane freeways. 

More recently, and due to severe public budget
constraints, a new program of private tolled motor-
ways was initiated. Nevertheless, the scope of pri-
vate tolled roads in Spain is currently limited. For a
review of the development of Spain’s motorways,
see Gómez-Ibañez and Meyer (1993), and for an
analysis of the present situation, see Ministerio de
Fomento (2003).
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APPENDIX B

TABLE B1   Estimated General Model 
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990

Coefficient Std. error t-statistic P-value

D(LGDP) 0.8942 0.0410 21.8117 0.0000

D(LPGAS) –0.3369 0.0157 –21.4261 0.0000

D(LTRAFFIC(–1)) 0.3642 0.0160 22.6942 0.0000

D(LTOLL1) –0.0371 0.2279 –0.1626 0.8709

D(LTOLL2) –0.2754 0.2630 –1.0471 0.2954

D(LTOLL3) –0.2338 0.2631 –0.8886 0.3745

D(LTOLL4) –0.3237 0.2548 –1.2704 0.2043

D(LTOLL5) –0.1799 0.2101 –0.8565 0.3920

D(LTOLL6) –0.4766 0.1451 –3.2853 0.0011

D(LTOLL7) –0.4758 0.1274 –3.7354 0.0002

D(LTOLL8) –0.4630 0.1362 –3.3982 0.0007

D(LTOLL9) –0.2811 0.1296 –2.1689 0.0304

D(LTOLL10) –0.4903 0.1258 –3.8977 0.0001

D(LTOLL11) –0.4512 0.1157 –3.9003 0.0001

D(LTOLL12) –0.5876 0.1893 –3.1042 0.0020

D(LTOLL13) –0.3588 0.1705 –2.1048 0.0356

D(LTOLL14) –0.3555 0.2371 –1.4994 0.1341

D(LTOLL15) –0.1118 0.1281 –0.8725 0.3832

D(LTOLL16) –0.3144 0.1504 –2.0901 0.0369

D(LTOLL17) –0.0580 0.1998 –0.2902 0.7717

D(LTOLL18) –0.1894 0.1477 –1.2828 0.1999

D(LTOLL19) –0.3475 0.2299 –1.5118 0.1309

D(LTOLL20) –0.3417 0.1964 –1.7398 0.0822

D(LTOLL21) –0.4309 0.2585 –1.6672 0.0958

D(LTOLL22) –0.3609 0.4125 –0.8748 0.3819

D(LTOLL23) –0.1517 0.0422 –3.5972 0.0003

D(LTOLL24) –0.1716 0.0390 –4.4061 0.0000

D(LTOLL25) –0.1815 0.0456 –3.9764 0.0001

D(LTOLL26) –0.2204 0.0629 –3.5052 0.0005

D(LTOLL27) –0.2831 0.0827 –3.4209 0.0007

D(LTOLL28) –0.2653 0.0608 –4.3657 0.0000

D(LTOLL29) –0.3136 0.0413 –7.5963 0.0000

D(LTOLL30) –0.4182 0.0646 –6.4717 0.0000

D(LTOLL31) –0.4387 0.0534 –8.2101 0.0000

D(LTOLL32) –0.4062 0.0465 –8.7398 0.0000

D(LTOLL33) –0.3620 0.0537 –6.7361 0.0000

D(LTOLL34) –0.3915 0.0414 –9.4648 0.0000

D(LTOLL35) –0.3447 0.0342 –10.0812 0.0000

D(LTOLL36) –0.3582 0.1184 –3.0254 0.0026
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D(LTOLL37) –0.3701 0.0445 –8.3134 0.0000

D(LTOLL38) –0.3904 0.0512 –7.6203 0.0000

D(LTOLL39) –0.3992 0.0489 –8.1651 0.0000

D(LTOLL40) –0.5231 0.2504 –2.0892 0.0370

D(LTOLL41) –0.4556 0.2466 –1.8476 0.0650

D(LTOLL42) –0.4489 0.1657 –2.7082 0.0069

D(LTOLL43) –0.4662 0.2451 –1.9018 0.0575

D(LTOLL44) –0.3729 0.1515 –2.4614 0.0140

D(LTOLL45) –0.4115 0.1619 –2.5420 0.0112

D(LTOLL46) –0.4045 0.2312 –1.7495 0.0806

D(LTOLL47) –0.5029 0.1554 –3.2366 0.0013

D(LTOLL48) –0.0931 0.2265 –0.4108 0.6813

D(LTOLL49) –0.2227 0.1657 –1.3439 0.1793

D(LTOLL50) –0.1935 0.0913 –2.1199 0.0343

D(LTOLL51) –0.3617 0.0650 –5.5628 0.0000

D(LTOLL52) –0.4411 0.0647 –6.8186 0.0000

D(LTOLL53) –0.8415 0.1494 –5.6340 0.0000

D(LTOLL54) –0.8140 0.1435 –5.6730 0.0000

D(LTOLL55) –0.8301 0.1714 –4.8438 0.0000

D(LTOLL56) –0.3729 0.1065 –3.5004 0.0005

D(LTOLL57) –0.3294 0.0839 –3.9255 0.0001

D(LTOLL58) –0.3569 0.1728 –2.0648 0.0392

D(LTOLL59) –0.3863 0.0936 –4.1281 0.0000

D(LTOLL60) –0.5015 0.0830 –6.0381 0.0000

D(LTOLL61) –0.5248 0.1946 –2.6970 0.0071

D(LTOLL62) –0.4816 0.1138 –4.2314 0.0000

D(LTOLL63) –0.3233 0.1335 –2.4213 0.0157

D(LTOLL64) –0.3922 0.0990 –3.9625 0.0001

D(LTOLL65) –0.4431 0.1168 –3.7933 0.0002

D(LTOLL66) –0.3706 0.1427 –2.5963 0.0096

D(LTOLL67) –0.3451 0.0534 –6.4635 0.0000

D(LTOLL68) –0.3692 0.0562 –6.5701 0.0000

D(LTOLL69) –0.4417 0.1117 –3.9532 0.0001

D(LTOLL70) –0.8108 0.2983 –2.7182 0.0067

D(LTOLL71) –0.8798 0.3854 –2.2825 0.0227

D(LTOLL72) –0.2516 0.3066 –0.8208 0.4120

D(Z1) –0.0517 0.0259 –1.9918 0.0467

D(Z2) –0.0688 0.0240 –2.8680 0.0042

D(Z3) –0.0720 0.0246 –2.9222 0.0036

D(Z4) –0.0518 0.0259 –1.9971 0.0461

(continues on next page)

TABLE B1   Estimated General Model  (continued)
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990
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Coefficient Std. error t-statistic P-value

D(Z5) 0.1548 0.0395 3.9192 0.0001

D(Z6) 0.1689 0.0363 4.6490 0.0000

D(Z7) 0.1197 0.0577 2.0755 0.0382

D(Z8) –0.0687 0.0214 –3.2092 0.0014

D(Z9) –0.0621 0.0198 –3.1309 0.0018

D(Z10) –0.0689 0.0283 –2.4343 0.0151

D(Z11) –0.0428 0.0228 –1.8769 0.0609

D(Z12) –0.0554 0.0242 –2.2876 0.0224

D(Z13) 0.0726 0.0248 2.9326 0.0034

D(Z14) –0.0337 0.0198 –1.7058 0.0884

D(Z15) 0.0622 0.0202 3.0823 0.0021

D(Z16) –0.0365 0.0172 –2.1197 0.0343

D(Z17) 0.0474 0.0175 2.7040 0.0070

D(Z18) 0.0439 0.0194 2.2611 0.0240

D(Z19) 0.0419 0.0155 2.7086 0.0069

D(Z20) 0.0515 0.0130 3.9495 0.0001

D(Z21) 0.1690 0.0440 3.8452 0.0001

D(Z22) 0.0812 0.0168 4.8386 0.0000

D(Z23) 0.0836 0.0209 4.0077 0.0001

D(Z24) 0.1399 0.0187 7.4758 0.0000

D(Z25) –0.1377 0.0492 –2.7967 0.0053

D(Z26) 0.0863 0.0178 4.8569 0.0000

D(Z27) 0.0749 0.0175 4.2714 0.0000

D(Z28) 0.0449 0.0206 2.1811 0.0294
Notes: All the variables are defined in first differences (D) of the logarithm (L). GDP = gross domestic product; 
PGAS = gasoline price; TRAFFIC = average daily traffic volume; TOLL = toll paid per km for the 72 motorway 
sections; D(Z1)–D(Z28) = the first differences of dummy variables to account for changes in the road network.

TABLE B1   Estimated General Model  (continued)
Dependent variable: D(LTRAFFIC)
Estimation method: weighted least squares
Total system (unbalanced) observations: 990




